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[4+1]-ANIONIC ANNULATION APPROACH TO
PHENYLSULFONYL SUBSTITUTED CYCLOPENTENES

Albert Padwa" and Michelle A. Filipkowski
Department of Chemistry, Emory University Atlanta, Georgia 30322 USA

Abstract: 2,3-Bis(phenylsulfonyl)-1,3-butadiene undergoes a [4+1]-annulation reaction with a variety of soft
carbanions to give phenylsulfonyl substituted cyclopentenes in good yield.

The chemistry of phenylsulfony! substituted 1,3-butadienes is receiving increasing attention
due to their synthetic versatility and the efficient n-bond activation by the sulfonyl group.15 Recently,
we demonstrated the use of 2,3-bis(phenyisulfonyl)-1,3-butadiene (1) as a versatile building block in
organic synthesis, particularly for [4+2]-cycloaddition chemistry.5 This diene also played an important
role in the successful outcome of our [4+1]-annulation strategy for pymrolidine formation, since it is
highly activated toward nucleophilic addition.6 While the reaction of 1 with heteronucleophiles has
been studied in some detail, there have been no examples of carbon-carbon bond forming reactions
of 1 with carbon-based nucleophiles. In the field of cyclopentanoid synthesis, a problem of continuing
interest is the development of a general method for the conversion of conjugated dienes to cyclo-
pentene derivatives.” Toward this end, we have used 2,3-bis(phenylsulfonyl)-1,3-butadiene (1) as
the key reagent for a novel 4+1-annulation approach to substituted cyclopentenes.

The pivotal step in our annulation strategy involves addition of a stabilized carbanion onto the
highly activated =-bond of 1. We began our studies by examining the reaction of 1 with malonitrile in
the presence of a slight excess of NaH in THF at 25°C. The major product formed corresponded to
cyclopentene 2 (60%). Similarly, treatment of diene 1 with cyclohexan-1,3-dione in the presence of
NaH (THF) gave rise to the related spirocyclopentene 3 in 70% yield. Interestingly, the reaction of 1
with bis(phenylsulfonyl)methane (NaH/THF) afforded allene 4 as the exclusive product in 75% iso-
lated yield. When 4 was allowed to stir for longer periods of time in the presence of a catalytic
amount of sodium benzenesulfinate, it was quantitatively transformed into cyclopentene 5. Since we
were interested in the mechanism by which 4 was converted to §, we studied the analogous reaction
of 1 with dimethyl malonate. Under conditions identical with those used above, allene 6 was initially
formed and was subsequently converted to 7 upon further stirring at 25°C in the presence of
PhSOzNa.

Treatment of 1 with a variety of different lithium enolates results in the formation of several
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allenyl sulfones (i.e., 8) related to 4 in 80-70% yield. However, when the corresponding trimethylsilyl
enol ethers were employed, the reaction with 1 in the presence of an equivalent of tetrabutylammon-
ium fluoride afforded the rearranged adducts 9 in 75% yield.
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A mechanism that is consistent with all the data is outlined in Scheme |. Initial attack of the
carbanion onto the terminal position of diene 1 is followed by PhSO2~ elimination to give the phenyl-
sulfonyl substituted allens (i.e., 4 or §). This substrate is highly activated toward nucleophilic addi-
tion8-11 because of its low lying LUMO energy level.12,13 Further reaction of the allene with benzene-
sulfinate anion generates the allyl phenylsulfonyi stabilized carbanion 10. A subsequent proton
transfer (either intra or intermolecular) produces 1 1, which is followed by a cyclization-elimination
sequence providing the five-membered ring and an additional quantity of benzenesulfinate anion.
This anion undergoes nucleophilic addition with another molecule of allene to regenerate 10 and

continue the chain process.
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The facility of the 5-endo trig cyclization under such mild conditions (25°C) is worthy of note
because it is generally considered to be a distavored process.14 There are, however, a number of

closely related cyclizations reported in the literature, providing good precedence for the cyclization
step15-17. When a lithium enolate is employed as the attacking nucleophile (i.6., R=H or alkyl;
E=CORy), proton transfer from 10 to 11 is less likely to occur and ejection of PhSOg2™ takes place
with regeneration of the allenyl sulfone. Under the conditions used with trimethylsilyl enol ethers,
carbanion 10 is protonated by some adventitious water producing 1 2 which undergoes a subsequent
1,3-phenyisulfonyl shift to give the thermodynamically more substituted isomer (i.e., 9).18

In summary, we have developed an efficient [4+1]-annulation sequence for the synthesis of
phenylsulfonyl substituted cyclopentenes. This approach nicely complements the weil known anionic
[3+2]-cyclization route.1® A number of useful addition reactions involving the vinyl sulfone functional-
ity present in the ring can now be exploited so as to prepare a wide variety of cyclopentenes bearing
functionalized appendages. Work along thesae lines is in progress and will be reported in due course.
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